01) Escreva os oito triângulos que aparecem na figura abaixo:
Resolução:
AEB, ACD, ADE, ABC, ABD, BEC, CDE. BCD
02) Calcule o perímetro:
a) de um triângulo cujo lado mede 5,2 cm.
P = 5,2 cm + 5,2 cm + 5,2 cm
P = 15,6 cm
b) de um triângulo isósceles cujos lados congruentes medem 7 cm e o terceiro lado 5 cm.
P = 7 cm + 7 cm + 5 cm
P = 19 cm
03) O perímetro de um triângulo equilátero é de 22,5 cm. Qual a medida de cada lado?
P = x + x + x
22,5 = 3x
x = 22,5/3
x = 7,5 cm
04) Num triângulo isósceles, os lados congruentes medem 7 cm e o perímetro mede 22 cm. Qual a medida do terceiro lado?
P = 2x + y
22 = 2.7 + y
22= 14 + y
22 - 14 = y
y = 8 cm
05) O perímetro do triângulo da figura é 37 cm. Qual a medida do menor lado?
Resolução: P = 37
P = 2x + 2 + 3x + 2x lado menor = 2x
37 = 2x + 2 + 3x + 2x = 2.5cm
37 - 2 = 7x = 10 cm
7x = 35
x = 35/7
x = 5 cm
06) Com os segmentos de medidas 8 cm, 7 cm e 18 cm podemos construir um triângulo? Por que?
Não.
Lembrando a condição de existência de um triângulo.
Em qualquer triângulo, cada lado é menor que a soma dos outros dois lados
8 < 7 + 18 7 < 8 + 18 18 < 8 + 7
8 < 25 Verdade 7 < 26 Verdade 18 < 15 falso
07) Calcule x:
a) 2x + 10º + x + 10º + 2x - 30º = 180º b) x + x + 5º + x/2 + 15 = 180º
2x + x + 2x = 180º - 10º + 30º - 10º 2x + 2x + 10º + x + 30º = 180º
5x = 210º - 20º 2x + 2x + x = 180º - 30º - 10º - 10º
5x = 190º 5x = 180º - 50º
x = 190º/5 5x = 130º
x = 38º x = 130º/5
x = 26º
08) Calcule x:
a) Aplicando O.P.V fazendo: 180º - 110º = 70º
x + 105º + 50º = 180º 70º + x + 5º = 2x
x + 155º = 180º 75º + x = 2x
x = 180º - 155º 75º = 2x - x
x = 25º 75º = x
b)
09) Na figura ao lado há:
b) 4 triângulos.
c) 5 triângulos.
d) 6 triângulos.
Letra: c
ABC, ABE,BCE,BCD, CDE
Nenhum comentário:
Postar um comentário